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Abstract

The current best conformant probabilistic planners encode
the problem as a bounded length CSP or SAT problem. While
these approaches can find optimal solutions for given plan
lengths, they often do not scale for large problems or plan
lengths. As has been shown in classical planning, heuristic
search outperforms CSP/SAT techniques (especially when a
plan length is not given a priori). The problem with apply-
ing heuristic search in probabilistic planning is that effective
heuristics are as yet lacking.
In this work, we apply heuristic search to conformant prob-
abilistic planning by adapting planning graph heuristics de-
veloped for non-deterministic planning. We evaluate a
straight-forward application of these planning graph tech-
niques, which amounts to exactly computing the distribution
over reachable relaxed planning graph layers. Computing
these distributions is costly, so we apply Sequential Monte
Carlo to approximate them. We demonstrate on several do-
mains how our approach enables our planner to far out-scale
existing (optimal) probabilistic planners and still find reason-
able quality solutions.

Introduction
Despite long standing interest (Kushmerick, Hanks, & Weld
1994; Majercik & Littman 1998; Hyafil & Bacchus 2003;
2004), probabilistic plan synthesis algorithms have a terrible
track record in terms of scalability. The current best con-
formant probabilistic planners are only able to handle very
small problems. In contrast, there has been steady progress
in scaling deterministic planning. Much of this progress has
come from the use of sophisticated reachability heuristics.
In this work, we show how to effectively use reachability
heuristics to solve conformant probabilistic planning (CPP)
problems. We use work on planning graph heuristics for
non-deterministic planning (Bryce, Kambhampati, & Smith
2006; Hoffmann & Brafman 2004) as our starting point.

We investigate an extension of the work by Bryce, Kamb-
hampati, & Smith (2006) that uses a planning graph gener-
alization called the labelled uncertainty graph (LUG). The
LUG is used to symbolically represent a set of relaxed plan-
ning graphs (much like the planning graphs used by Confor-
mant GraphPlan, Smith & Weld, 1998), where each is asso-
ciated with a possible world. While the LUG (as described
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by, Bryce, Kambhampati, & Smith, 2006) works only with
state uncertainty, it is necessary in CPP to handle action un-
certainty. Extending the LUG to consider action uncertainty
involves symbolically representing how at each level CGP
explicitly splits the planning graph over all joint outcomes
of uncertain actions. In such a case, each time step has a set
of planning graph layers (each a possible world) defined by
the cross product of an exponential set of joint action out-
comes and an exponential number of possible worlds from
the previous level.

Without uncertain actions, the LUG worked well because
while there were an exponential number of possible worlds
at each time step the number was held constant. With uncer-
tain actions, an explicit or symbolic representation of plan-
ning graphs for all possible worlds at each time step is ex-
actly representing an exponentially increasing set. Since we
are only interested in planning graphs to compute heuristics,
it is both impractical and unnecessary to exactly represent
all of the reachable possible worlds. We turn to approximate
methods for representing the possible worlds. Since we are
applying planning graphs in a probabilistic setting, we can
use Monte Carlo techniques to construct planning graphs.

There are a wealth of methods, that fall under the name se-
quential Monte Carlo (SMC) (Doucet, de Freita, & Gordon
2001) for reasoning about a hidden random variable over
time. SMC applied to “on-line” Bayesian filtering is often
called particle filtering, however we use SMC for “off-line”
prediction. The idea behind SMC is to represent a probabil-
ity distribution as a set of samples (particles), which evolve
recursively over time by sampling a transition function. In
our application, each particle is a (simulated) deterministic
planning graph and the probabilistic transition function re-
sembles the Conformant GraphPlan (Smith & Weld 1998)
construction semantics. Using particles is much cheaper
than splitting over all joint outcomes of uncertain actions
to represent the true distribution over possible worlds in the
planning graph. By using more particles, we capture more
possible worlds, exploiting the natural affinity between SMC
approximation and heuristic accuracy.

The SMC technique requires multiple planning graphs
(each a particle), but their number is fixed. We could rep-
resent each planning graph explicitly, but they may have
considerable redundant structure. Instead, we generalize the
LUG to symbolically represent the set of planning graph



particles in a planning graph we call the Monte Carlo LUG
(McLUG). We show that by using the McLUG to extract
a relaxed plan heuristic we are able to greatly out-scale
the current best conformant probabilistic planner CPplan
(Hyafil & Bacchus 2004; 2003) in a number of domains,
without giving up too much in terms of plan quality.

Our presentation starts by describing the relevant back-
ground of CPP and representation within our planner, and
then gives a brief primer on SMC for prediction. We follow
with a worked example of how to construct planning graphs
that exactly compute the probability distribution over pos-
sible worlds versus using SMC, as well as how one would
symbolically represent planning graph particles. After the
intuitive example, we give the details of McLUG and the
associated relaxed plan heuristic. Finally, we present an em-
pirical analysis of our technique compared to CPplan, and
finish with a discussion of related work, and conclusions.

Background & Representation
In this section we give a brief introduction to planning graph
heuristics, and then describe our action and belief state rep-
resentation, the CPP problem, the semantics of conformant
probabilistic plans, and our search algorithm.

Planning Graph Heuristics: Planning graphs have become
the foundation for most modern heuristic search planners
(Kambhampati 2003). A planning graph relaxes the plan-
ning problem by ignoring some or all negative interactions
between actions. The idea is to hypothesize which actions
can be applied to the current search node, then determine
what literals are possible in successor states. We then find
which actions can be supported by these literals. This alter-
nation of possible action and literal layers continues until we
find that all of the goal literals are possible in a literal layer.
At this point it is possible to reason backwards to find the
actions needed to support the goals while ignoring negative
interactions. The resulting set of actions is termed a relaxed
plan, and the number of actions can be used as a heuristic.

Belief States: A state of the world is an exhaustive assign-
ment of truth values to every fluent f ∈ F . Fluent truth
values f = l and f = ¬l are termed fluent literals (or just
literals). Thus, a state is also a set of literals. A belief state
is a joint probability distribution over all fluents. The proba-
bility of a set of literals, for instance a state s, in belief state
b is the marginal probability of the literals, denoted b(s). A
state is said to be in a belief state b (s ∈ b) if b(s) > 0.

Actions: An action a is a tuple 〈ρe(a),Φ(a)〉, where
ρe(a) is an enabling precondition, and Φ(a) is a set of
causative outcomes. The enabling precondition ρe(a) is a
conjunctive set of literals that determines action applicabil-
ity. An action a is applicable appl(a, b) to belief state b iff
∀s∈bρ

e(a) ⊆ s. The causative outcomes Φ(a) are a set of
tuples 〈w(a, i),Φ(a, i)〉 representing possible outcomes (in-
dexed by i), where Φ(a, i) is a set of several conditional
effects (indexed by j), and w(a, i) is the probability that
outcome i is realized. Each conditional effect ϕ(a, i, j) in
outcome Φ(a, i) is of the form ρ(a, i, j) → ε(a, i, j), where
both the antecedent (secondary precondition) ρ(a, i, j) and

consequent ε(a, i, j) are a conjunctive set of literals. This
representation of effects follows the 1ND normal form pre-
sented by Rintanen (2003). As outlined in the PPDDL stan-
dard (Younes & Littman 2004), for every action we can use
Φ(a) to derive a state transition function T (s, a, s′) that de-
fines the probability that executing a in state s will result in
state s′. Thus, executing action a in belief state b, denoted
exec(a, b) = ba, defines the probability of each state in the
successor belief state as ba(s′) =

∑
s∈b b(s)T (s, a, s′).

Definition 1 (Conformant Probabilistic Planning). The
Conformant Probabilistic Planning problem is the tuple
CPP = 〈F,A, bI , G, τ〉, where F is a set of boolean flu-
ents, A is a set of actions, bI is an initial belief state, G is
the goal description (a conjunctive set of literals), and τ is
a goal satisfaction threshold (0 < τ ≤ 1).

Definition 2 (Conformant Probabilistic Plan). A confor-
mant plan P is of the form P ::=⊥ | a | a;P . Executing a
plan in belief state b defines successor belief states as fol-
lows: exec(⊥, b) = b, exec(a, b) = ba, and exec(a;P, b) =
exec(P, ba). A plan (a0; a1; ...; an) is executable with re-
spect to bI if each action ai is applicable appl(ai, bi) to a be-
lief state bi, where bi = exec(a0; ...; ai−1, b0) and bI = b0.
If plan P is executable for bI , and bP = exec(P, bI), then P
satisfies G with probability bP (G). If bP (G) ≥ τ , the plan
solves the problem.

Search: We use forward-chaining, weighted A* search to
find solutions to CPP. The search graph is organized using
nodes to represent belief states, and edges for actions. A
solution is a path in the search graph from bI to a terminal
node. A belief state b is a terminal node if b(G) ≥ τ . The
g-value of a node is the length of the minimum cost path to
reach the node from bI . The f-value of a node is g(b)+5h(b),
using a weight of 5 for the heuristic.1 In the remainder of the
paper we concentrate on the very important issue of comput-
ing h(b) using an extension of planning graph heuristics.

Sequential Monte Carlo
In many scientific disciplines it is necessary to track the dis-
tribution over values of a random variable X over time. This
problem can be stated as a first-order stationary Markov pro-
cess with an initial distribution P (X0) and transition equa-
tion P (Xk|Xk−1). It is possible to compute the probability
distribution over the values of X after k steps as P (Xk) =∫

P (Xk|Xk−1)P (Xk−1)dXk−1. In general, P (Xk) can be
very difficult to compute exactly, even when it is a discrete
distribution (as in our scenario).

We can approximate P (Xk) as a set of N samples
{xn

k}N−1
n=0 , where the probability that Xk takes value xk,

Pr(Xk = xk) ≈ |{xn
k |xn

k =xk}|
N

is the proportion of particles taking on value xk. At time
k = 0, the set of samples is drawn from the initial distri-
bution P (X0). At each time step k > 0, we simulate each
particle from time k − 1 by sampling the transition equation

1Since our heuristic turns out to be inadmissible, the heuristic
weight has no further bearing on admissibility. In practice, using
five as a heuristic weight tends to improve search performance.



xn
k ∼ P (Xk|xn

k−1). In our application of SMC to planning
graphs, samples represent possible worlds and our transi-
tion equation resembles the Conformant GraphPlan (Smith
& Weld 1998) construction semantics.

We would like to point out that our SMC technique is in-
spired by, but different from the standard particle filter. The
difference is that we are using SMC for prediction and not
on-line filtering. We do not filter observations to weight our
particles for re-sampling. Particles are assumed to be unit
weight throughout simulation.

Monte Carlo Planning Graph Construction
We start with an example to give the intuition for Monte
Carlo simulation in planning graph construction. Consider
a simple logistics domain where we wish to load a specific
freight package into a truck and loading works probabilis-
tically (because rain is making things slippery). There are
two possible locations where we could pick up the package,
but we are unsure of which location. There are three flu-
ents, F = { atP1, atP2, inP }, our initial belief state bI is
0.5: s0 = {atP1, ¬atP2, ¬inP }, 0.5: s1 = {¬atP1, atP2,
¬inP }, and the goal is G ={inP}. The package is at loca-
tion 1 (atP1) or location 2 (atP2) with equal probability, and
is definitely not in the truck (inP). Our actions are LoadP1
and LoadP2 to load the package at locations 1 and 2, respec-
tively. Both actions have an empty enabling precondition {},
so they are always applicable, and have two outcomes. The
first outcome with probability 0.8 loads the package if it is
at the location, and the second outcome with probability 0.2
does nothing. We assume for the purpose of exposition that
driving between locations in not necessary. The descriptions
of the actions are:

LoadP1 = 〈{}, {〈0.8, {atP1→inP}〉, 〈0.2, {}〉}〉
LoadP2 = 〈{}, {〈0.8, {atP2→inP}〉, 〈0.2, {}〉}〉

Each action has two outcomes. The first outcome has a sin-
gle conditional effect, and the second has no effects (which
we denote by “Noop” in Figure 1).

Figure 1 illustrates several approaches to planning graph
based reachability analysis for our simplified logistics do-
main. (We assume we are evaluating the heuristic value
h(bI) of reaching G from our initial belief state.) The first
is in the spirit of Conformant GraphPlan, where uncertainty
is handled by splitting the planning graph layers for all out-
comes of uncertain events. CGP creates a planning graph
that resembles a tree, where each branch corresponds to a
deterministic planning graph.

CGP: In Figure 1a, we see that there are two initial literal
layers (denoted by literals in boxes), one for each possible
world at time zero. We denote the uncertainty in the source
belief state by X0, which takes on values s0, s1 (for each
state in our belief state). Both load actions are applicable in
both possible worlds because their enabling preconditions
are always satisfied. The edges leaving the actions denote
the probabilistic outcomes (each a set of conditional effects).
While it is possible for any outcome of an action to occur,
the effects of the outcome may not have their secondary pre-
condition supported. In world s0, if outcome Φ(LoadP1, 0)
occurs, then effect ϕ(LoadP1, 0, 0) (denoted by atP1→inP)
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Figure 1: Variations on planning graph representations.



is enabled and will occur, however even if Φ(LoadP2, 0) oc-
curs ϕ(LoadP2, 0, 0) is not enabled and will not occur.

The set of possible worlds at time one is determined by the
cross product of action outcomes in each world at time zero.
For instance, possible world x00 is formed from world s0
when outcomes Φ(LoadP1, 0) and Φ(LoadP2, 0) co-occur.
Likewise, world x12 is formed from world s1 when out-
comes Φ(LoadP1, 1) and Φ(LoadP2, 0) occur. (The edges
from outcomes to possible worlds in Figure 1a denote which
outcomes are used to form the worlds.)

CGP is exactly representing the reachable literal layers for
all possible worlds. In our example, CGP could determine
the exact distribution over X1 for every value of X0. We see
that our goal is satisfied in half of the possible worlds at time
1, with a total probability of 0.8. It is possible to back-chain
on this graph like CGP search to extract a relaxed plan (by
ignoring mutexes) that satisfies the goal with 0.8 probabil-
ity. However, we note that this is exactly representing all
possible worlds (which can increase exponentially).

McCGP: Next, we illustrate a Monte Carlo simulation ap-
proach we call Monte Carlo CGP (McCGP), in Figure 1b.
The idea is to represent a set of N planning graph particles.
In our example we sample N = 4 states from bI , denoted
{xn

0}N−1
n=0 ∼ P (X0), where P (X0) = bI , and create an ini-

tial literal layer for each. To simulate a particle we first insert
the applicable actions. We then insert effects by sampling
from the distribution of joint action outcomes. (It is possible
to sample the outcome of each action independently because
their outcomes are independent.) Finally, we construct the
subsequent literal layer, given the sampled outcomes. Note
that each particle is a deterministic planning graph.

In our example, the simulation was lucky and the literal
layer for each particle at time 1 satisfies the goal, so we may
think the best one step plan achieves the goal with certainty.
From each of these graphs it is possible to extract a relaxed
plan, which can then be aggregated to give a heuristic as
described by Bryce, Kambhampati, & Smith (2006).

While McCGP improves memory consumption by bound-
ing the number of possible worlds, it still wastes quite a bit
of memory. For the resulting planning graphs many of the
literal layers are identical. Symbolic techniques can help us
compactly represent the set of planning graph particles.

Symbolic-McCGP: To see the intuition for symbolic rep-
resentation of planning graphs and why it is useful for
our Monte Carlo techniques, consider our third example,
symbolic-McCGP, in Figure 1c. In McCGP our sampling
gave us two copies of the initial literal layers for each initial
literal layer in CGP. We can capture the same notion of sam-
ples by representing the unique literal layers once and asso-
ciating a label with each. The label signifies which samples
use the literal layer. By labelling entire literal layers we are
improving our use of memory, but we can do better.

McLUG: Using ideas from Bryce, Kambhampati, & Smith
(2006) , we can represent a single literal layer at every time
step for all samples in a planning graph called the Monte
Carlo LUG (McLUG), in Figure 1d. By analogy with the
symbolic-McCGP planning graph, we associate a label with
each literal instead of each literal layer. The idea is to union

the connectivity of multiple planning graphs into a single
planning graph skeleton, and use labels on the actions and
literals to signify the original, explicit planning graphs in
which an action or literal belongs. The contribution in the
McLUG is to represent a set of particles symbolically and
provide a relaxed plan extraction procedure that takes ad-
vantage of the symbolic representation.

Symbolic Representation
Bryce, Kambhampati, & Smith (2006) describe a planning
graph generalization called the Labelled Uncertainty Graph
(LUG), used in non-deterministic conformant planning, that
symbolically represents the exponential number of plan-
ning graphs used by Conformant GraphPlan (Smith & Weld
1998). Bryce, Kambhampati, & Smith (2006) construct
multiple planning graphs symbolically by propagating “la-
bels” over a single planning graph skeleton. The skeleton
serves to represent the connectivity between actions and lit-
erals in their preconditions and effects. The labels on ac-
tions and literals capture non-determinism by indicating the
outcomes of random events that support the actions and lit-
erals. In the problems considered by Bryce, Kambhampati,
& Smith (2006) there is only a single random event X0 cap-
tured by labels because the actions are deterministic. Where
CGP would build a planning graph for each possible state,
the LUG is able to use labels to denote which of the ex-
plicit planning graphs would contain a given literal or ac-
tion in a level. For instance, if CGP built a planning graph
for possible worlds s1, ..., sn (each a state in a source be-
lief state) and the planning graphs for s1, ..., sm each had
literal p in level k, then the LUG would have p in level k
labelled with a propositional formula �k(p) whose models
are {s1, ..., sm}. In the worst case, the random event X0

captured by the labels has 2|F | outcomes (i.e., all states are
in the belief state), characterized by a logical formula over
log2(2|F |) = |F | boolean variables.

Bryce, Kambhampati, & Smith (2006) construct the LUG
until all goal literals are labelled with all states in the source
belief state, meaning the goal is strongly reachable in the
relaxed plan space. The authors defined a strong relaxed
plan procedure that back-chains on the LUG to support the
goal literals in all possible worlds. This relaxed plan proved
effective for search in both conformant and conditional non-
deterministic planning.

Exact Symbolic Representation
Despite the utility of the LUG, it has a major limitation
in that it does not reason with actions that have uncertain
effects, an essential feature of probabilistic planning. We
would like to complete the analogy between the LUG and
CGP by symbolically representing uncertain effects. How-
ever, as we argue, exactly representing all possible worlds is
still too costly even with symbolic techniques.

We previously noted that the LUG symbolically rep-
resents P (X0) using labels with |F | boolean variables.
When we have uncertain actions, the distribution P (X1)
requires additional boolean variables. For example, if
the action layer contains |A| actions, each with m prob-
abilistic outcomes, then we would require an additional



log2(m|A|) = |A|log2(m) boolean variables (for a total
of |F | + |A|log2(m) boolean variables to exactly represent
the distribution P (X1)). For the distribution after k steps,
we would need |F | + k|A|log2(m) boolean variables. In
a reasonable sized domain, where |F | = 20, |A| = 30,
and m = 2, a LUG with k = 3 steps could require
20+(3)30log2(2) = 110 boolean variables, and for k = 5
it needs 170. Currently, a label function with this many
boolean variables is feasible to construct, but is too costly
for use in heuristics. We implemented this approach (rep-
resenting labels as BDDs, Somenzi, 1998) and it performed
very poorly; in particular it ran out of memory construct-
ing the first planning graph for the p2-2-2 logistics problem,
described in the next section.

We could potentially compile all action uncertainty into
state uncertainty to alleviate the need for additional label
variables. This technique, mentioned in (Smith & Weld
1998), involves making the uncertain outcome of each ac-
tion conditional on a unique, random, and unknown state
variable for each possible time step the action can execute.
While this compilation would allow us to restrict the growth
of LUG labels (to a constant sized, but exponentially larger
representation), there is a problem. We are solving indefinite
horizon planning problems, meaning that the number of pos-
sible time points for an action to execute is unbounded. This
further means that the size of the compilation is unbounded.
Consequently, we shift our focus to approximating the dis-
tribution using particles.

Symbolic Particle Representation (McLUG)
We describe how to construct a McLUG, a symbolic ver-
sion of McCGP that we use to extract relaxed plan heuris-
tics. There are noticeable similarities to the LUG, but by
using a fixed number of particles we avoid adding boolean
variables to the label function at each level of the graph. We
implement labels as boolean formulas, but find it convenient
in this context to describe them as sets of particles (where
each particle is in reality a model of a boolean formula).
The McLUG is constructed with respect to a belief state
encountered in search which we call the source belief state.
The algorithm to construct the McLUG starts by forming
an initial literal layer L0 and an inductive step to generate a
graph level {Ak, Ek,Lk} consisting of an action, effect, and
literal layer. We describe each part of this procedure in detail
and follow with a description of relaxed plan extraction.

Initial Literal Layer: The initial literal layer is constructed
with a set of N particles {xn

0}N−1
n=0 drawn from the source

belief state. Each particle xn
0 corresponds to a state s ∈ b in

the source belief state. (The super-script of a particle denotes
its identity, and the sub-script denotes its time index.)

In the example (assuming N=4), the samples map to the
states: x0

0 = s0, x1
0 = s0, x2

0 = s1, x3
0 = s1.

The initial literal layer L0 is a set of labelled literals
L0 = {l|�0(l) �= ∅}, where each literal must be labelled
with at least one particle. A literal is labelled �0(l) =
{xn

0 |l ∈ s, xn
0 = s} to denote particles that correspond to

states where the literal holds.
In the example, the initial literal layer is L0 = {atP1,

¬atP1, atP2, ¬atP2, ¬inP}, and the labels are:

�0(atP1) = �0(¬atP2) = {x0
0, x

1
0}

�0(¬atP1) = �0(atP2) = {x2
0, x

3
0}

�0(¬inP) = {x0
0, x

1
0, x

2
0, x

3
0}

Action Layer: The action layer at time k consists of all
actions whose enabling precondition is enabled, meaning
all of the enabling precondition literals hold together in at
least one particle. The action layer is defined as all en-
abled actions Ak = {a|�k(a) �= ∅}, where the label of each
action is the set of particles where it is enabled �k(a) =⋂

l∈ρe(a) �k(l). When the enabling precondition is empty
the label contains all particles.

In the example, the zeroth action layer is A0 = {LoadP1,
LoadP2}, and the labels are:

�0(LoadP1) = �0(LoadP2) = {x0
0, x

1
0, x

2
0, x

3
0}

Both actions are enabled for all particles because their en-
abling preconditions are empty, thus always enabled.

Effect Layer: The effect layer contains all effects that are
labelled with a particle Ek = {ϕ(a, i, j)|�k(ϕ(a, i, j)) �= ∅}.
Determining which effects get labelled requires simulating
the path of each particle. The path of a particle is simulated
by sampling from the distribution over the joint outcomes of
all enabled actions, xn

k+1 ∼ P (Xk+1|xn
k ). We sample by

first identifying the actions that are applicable for a particle
xn

k . An action is applicable for particle xn
k if xn

k ∈ �k(a).
For each applicable action we sample from the distribution
of its outcomes. The set of sampled outcomes identifies the
path of xn

k to xn
k+1. We record the path by adding xn

k+1

to the labels �k(ϕ(a, i, j)) of applicable effects of sampled
outcomes. Note that even though an outcome is sampled for
a particle, some of its effects may not be applicable because
their antecedents are not supported by the particle (i.e. xn

k �∈⋂
l∈ρ(a,i,j) �k(l)).
In the example, we first simulate x0

0 by sampling the out-
comes of all actions applicable in x0

0, which is both Load
actions. Suppose we get outcome 0 for LoadP1 and out-
come 1 for LoadP2, which are then labelled with x0

1. Par-
ticle x1

0 happens to sample the same outcomes as x0
0, and

we treat it similarly. Particle x2
0 samples outcome 0 of

both actions. Note that we do not label the effect of out-
come 0 for LoadP1 with x2

1 because the effect is not en-
abled in x2

0. Finally, for particle x3
0 we sample outcome 1 of

LoadP1 and outcome 0 of LoadP2. Thus, the effect layer is
E0 = {ϕ(LoadP1, 0, 0), ϕ(LoadP1, 1, 0), ϕ(LoadP2, 0, 0),
ϕ(LoadP2, 1, 0)}, labelled as:

�0(ϕ(LoadP1, 0, 0)) = {x0
1, x

1
1}

�0(ϕ(LoadP1, 1, 0)) = {x3
1}

�0(ϕ(LoadP2, 0, 0)) = {x2
1, x

3
1}

�0(ϕ(LoadP2, 1, 0)) = {x0
1, x

1
1}

Literal Layer: Literal layer Lk contains all literals that are
given by an effect in Ek−1. Each literal is labelled by the
particles of every effect that gives it support. The literal layer
is defined as Lk = {l|�k(l) �= ∅}, where the label of a literal
is �k(l) =

⋃
l∈ε(a,i,j),ϕ(a,i,j)∈Ek−1

�k−1(ϕ(a, i, j)).
In the example, the level one literal layer is L1 = L0 ∪

{inP}. The literals are labelled as:



�1(atP1) = �1(¬atP2) = {x0
1, x

1
1}

�1(¬atP1) = �1(atP2) = {x2
1, x

3
1}

�1(inP) = �1(¬inP) = {x0
1, x

1
1, x

2
1, x

3
1}

The literals from the previous literal layer L0 persist through
implicit noop actions, allowing them to be labelled as in the
previous level – in addition to particles from any new sup-
porters. The inP literal is supported by two effects, and the
union of their particles define the label.

Termination: McLUG construction continues until a literal
layer supports the goal with probability no less than τ . We
assess the probability of the goal at level k by finding the set
of particles where the goal is supported and taking the ratio
of its size with N. Formally,

Pr(G|Xk) ≈ | T

l∈G �k(l)|
N

We also define level off for the McLUG as the condition
when every literal in a literal layer is labelled with the same
number of particles as in the previous level. If level off is
reached without Pr(G|Xk) ≥ τ , then we set the heuristic
value of the source belief state to ∞.

Heuristics
We just defined how to terminate construction of the
McLUG at level k, and we can use k as a measure of the
number of steps needed to achieve the goal with probability
no less than τ . This heuristic is similar to the level heuristic
defined for the LUG (Bryce, Kambhampati, & Smith 2006).
As has been shown in non-deterministic and classical plan-
ning, relaxed plan heuristics are often much more effective,
despite being inadmissible. Since we are already approxi-
mating the possible world distribution of the planning graph
and losing admissibility, we decide to use relaxed plans as
our heuristic. Our relaxed plan extraction is almost identical
to the relaxed plan extraction in the LUG. The extraction is
very fast because it makes use of the symbolic representa-
tion to obtain a relaxed plan for all particles at once, rather
than each individually and aggregating them. The intuition
behind the relaxed plan is that we know which particles sup-
port the goals and which paths the particles took through the
McLUG, so we can pick actions, labelled with these parti-
cles, that support the goal.

In our example, the goal inP is labelled with four
particles {x0

1, x
1
1, x

2
1, x

3
1}. Particles x0

1, x
1
1 are supported

by ϕ(LoadP1, 0, 0), and particles x2
1, x

3
1 are supported by

ϕ(LoadP2, 0, 0), so we include both LoadP1 and LoadP2
in the relaxed plan. For each action we subgoal on the an-
tecedent of the chosen conditional effect as well as its en-
abling precondition. By including LoadP1 in the relaxed
plan to support particles x0

0, x
1
0, we have to support atP1 for

the particles. We similarly subgoal for the particles sup-
ported by LoadP2. Fortunately, we have already reached
level 0 and do not need to support the subgoals further. The
value of the relaxed plan is two because we use two actions.

Often there are many choices for supporting a subgoal in
a set of particles. Consider a subgoal g that must be sup-
ported in a set of particles {x1

k, x2
k, x3

k} and is supported by
effect ϕ in particles x1

k and x2
k, ϕ′ in particles x2

k and x3
k,

and ϕ′′ in x2
k. Choosing support in the wrong order may

lead us to include more actions than needed, especially if
the effects are of different actions. This problem is actually
a set cover, which we solve greedily. For example, until the
set of particles for g is covered, we select supporting effects
based on the number of new particles they cover (except for
literal persistence actions, which we prefer over all others).
The number of particles an effect can support is proportional
to the probability with which the effect supports the literal.
Say we first pick ϕ because it covers two new particles, then
ϕ′ can cover one new particle, and ϕ′′ covers no new par-
ticles. We finish the cover by selecting ϕ′ for particle x3

k.
Notice that even though ϕ′ can support two particles we use
it to support one. When we subgoal to support ϕ′ we only
support it in particle x3

k to avoid “bloating” the relaxed plan.

Empirical Analysis
We externally evaluate our planner and its heuristic based
on the McLUG by comparing with the leading approach to
CPP, CPplan (Hyafil & Bacchus 2003; 2004). We also in-
ternally evaluate our approach by adjusting the number of
particles N that we use in each McLUG. We refrain from
comparing with POMDP solvers, as did (Hyafil & Bacchus
2004), because they were shown to be effective only on
problems with very small state spaces (e.g., slippery gripper
and sandcastle-67) and we care about problems with large
state spaces. Our approach does only slightly better than
CPplan on the small state space problems and we doubt we
are superior to the POMDP solvers on these problems.

Our planner is implemented in C and uses several exist-
ing technologies. It employs the PPDDL parser (Younes &
Littman 2004) for input, the IPP planning graph construction
code (Koehler et al. 1997) for the McLUG, and the CUDD
BDD package (Somenzi 1998) for representing belief states,
actions, and labels. We use four test domains for our eval-
uation: logistics, grid, slippery gripper, and sandcastle-67.
In our test setup, we used a 2.66 GHz P4 Linux machine
with 1GB of memory, with a timeout of 20 minutes for each
problem. We note that CPplan performs marginally worse
than previously reported because our machine has one third
the memory of the machine Hyafil & Bacchus (2004) used
for their experiments.

CPplan is an optimal bounded length planner that uses a
CSP solver for CPP. Part of the reason CPplan works so well
is its efficient caching scheme that re-uses optimal plan suf-
fixes to prune possible solutions. In comparison, our work
computes a relaxation of plan suffixes to heuristically rank
partial solutions. CPplan finds the optimal probability of
goal satisfaction for a given plan length (an NPPP-complete
problem, Littman, Goldsmith, & Mundhenk, 1998), but our
planner, like Buridan (Kushmerick, Hanks, & Weld 1994),
finds plans that satisfy the goal with probability no less
than τ (an undecidable problem, Madani, Hanks, & Con-
don, 1999). CPplan could be used to find an optimal length
plan that exceeds τ by iterating over increasing plan lengths
(similar to BlackBox, Kautz, McAllester, & Selman, 1996).

To compare with CPplan, we run CPplan on a problem for
each plan length until it exceeds our time or memory limit.
We record the probability that CPplan satisfies the goal for
each plan length. We then give our planner a series of prob-
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Figure 2: Run times (s), Plan lengths, and Expanded Nodes vs. τ (log scale) for Logistics p2-2-2
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Figure 3: Run times (s), Plan lengths, and Expanded Nodes vs. τ (log scale) for Logistics p4-2-2
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Figure 4: Run times (s), Plan lengths, and Expanded Nodes vs. τ (log scale) for Logistics p2-2-4

lems with increasing values for τ (which match the values
found by CPplan). If our planner can solve the problem
for all values of τ solved by CPplan, then we increase τ by
fixed increments thereafter. We ran our planner five times on
each problem and present the average run time, plan length,
and expanded search nodes. Comparing the planners in this
fashion allows us to compare the plan lengths found by our
planner to the optimal plan lengths found by CPplan for the
same value of τ . Our planner often finds plans that exceed τ
(sometimes quite a bit) and includes more actions, whereas
CPplan meets τ with the optimal number of actions. Nev-
ertheless, we feel the comparison is fair and illustrates the
pros/cons of an optimal planner with respect to a heuristic
planner. We intend to show that using CPplan to iterate over
increasing plan lengths to solve our problem limits scalabil-
ity. We choose CPplan for comparison because planners that
directly solve our problem do not scale nearly as well.

Logistics: The logistics domain has the standard logistics

actions of un/loading, driving, and flying, but adds uncer-
tainty. Hyafil & Bacchus (2004) enriched the domain devel-
oped by Hoffmann & Brafman (2004) to not only include
initial state uncertainty, but also action uncertainty. In each
problem there are some number of packages whose prob-
ability of initial location is uniformly distributed over some
locations and un/loading is only probabilistically successful.
Plans require several loads and unloads for a single package
at several locations, making a relatively simple determinis-
tic problem a very difficult stochastic problem. We compare
on three problems p2-2-2, p4-2-2, and p2-2-4, where each
problem is indexed by the number of possible initial loca-
tions for a package, the number of cities, and the number of
packages. See (Hyafil & Bacchus 2004) for more details.

The plots in Figures 2, 3, and 4 compare the total run
time in seconds (left), the plan lengths (center), and num-
ber of expanded search nodes (right) of our planner with
16/32/64/128 particles in the McLUG versus CPplan. In
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Figure 6: Run times (s), Plan lengths, and Expanded Nodes vs. τ for Grid-0.5

this domain we also use helpful actions from the relaxed plan
(Hoffmann & Nebel 2001). We notice that CPplan is able to
at best find solutions where τ ≤ 0.26 in p2-2-2, τ ≤ 0.09 in
p4-2-2, and τ ≤ 0.03 in p2-2-4. In most cases our planner
is able to find plans much faster than CPplan for the prob-
lems they both solve. It is more interesting that our planner
is able to solve problems for much larger values of τ . Our
planner finds solutions where τ ≤ 0.95 in p2-2-2, τ ≤ 0.85
in p4-2-2, and τ ≤ 0.15 in p2-2-4, which is respectively 3.7,
9.6, 5.2 times the maximum values of τ solved by CPplan.
In terms of plan quality, the average increase in plan length
for the problems we both solved was 4.6 actions in p2-2-2
(34% longer), 4.2 actions in p4-2-2 (33% longer), and 6.3
actions in p2-2-4 (56% longer).

The plot of plan lengths gives some intuition for why CP-
plan has trouble finding plans for greater values of τ . The
plan lengths for the larger values of τ approach 40-50 ac-
tions and CPplan is limited to plans of around 10-15 ac-
tions. For our planner we notice that plan length and total
time scale roughly linearly as τ increases. Combined with
the results in the plot showing the number of search node ex-
pansions we can see that the McLUG relaxed plan heuristic
directs search very well.

We would also like to point out some differences in how
our planner performs when the number of particles changes.
As τ increases, using more particles makes the search more
consistent (i.e., fluctuation in terms of run time, plan length,
and expanded nodes is minimized). Total time generally
increases as the number of particles increases because the
number of generated search nodes is roughly the same and
the heuristic is costlier.

Grid: The Grid domain, as described by (Hyafil & Bacchus

2004), is a 10x10 grid where a robot can move one of four
directions to adjacent grid points. The robot has imperfect
effectors and moves in the intended direction with high prob-
ability (0.8), and in one of the two perpendicular directions
with a low probability (0.1). As the robot moves, its belief
state grows and it becomes difficult to localize itself. The
goal is to reach the upper corner of the grid. The initial be-
lief state is a single state where the robot is at a known grid
point. We test on the most difficult instance where the robot
starts in the lower opposite corner.

Figure 5 shows total run time, plan lengths, and expanded
search nodes for the problem. We notice that CPplan can
solve the problem for only the smallest values of τ , whereas
our planner scales much better. For the single problem
we both solve, we were on average finding solutions with
4.75 more actions (26% longer). Again, our planner scales
roughly linearly because the McLUG heuristic is very in-
formed. In this problem, we are able to do very well with
only 4-8 particles, leading us to believe that there are only a
few very important regions of the distribution over possible
worlds and we actually capture them.

Doing so well with only a few particles made us question
whether the McLUG is really needed. As a sanity check,
we show results for a variation of the grid problem in Figure
6. This problem defines the probability that the robot moves
in the intended direction to 0.5 and to 0.25 for the adjacent
directions. The result is that as the robot moves, the belief
state will be much less peaked and harder to capture with
few particles. We see that our doubts are quieted by the
results. More particles are required to get good quality plans
and make search more effective.

Slippery Gripper: Slippery Gripper is a well known prob-
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Figure 7: Run times (s), and Plan lengths vs. τ for Slippery Gripper (left) and SandCastle-67 (right).

lem that was originally presented by Kushmerick, Hanks, &
Weld (1994). There are four probabilistic actions that clean
and dry a gripper and paint and pick-up a block. The goal
is to paint the block and hold it with a clean gripper. Many
of the lower values of τ find very short plans and take very
little run time, so we focus on the higher values of τ where
we see interesting scaling behavior.

Figure 7 shows the total time and plan length results for
this problem in the two left-most plots. For short plans,
CPplan is faster because the McLUG has some additional
overhead, but as τ increases and plans have to be longer
the McLUG proves useful. Using 8 particles, we are able
to find solutions faster than CPplan in the problems where
τ > .99. Using more particles, we are able to find solutions
faster for most problems where τ ≥ .998. In terms of plan
quality, our solutions include on average 1.8 more actions
(33% longer).

SandCastle-67: SandCastle-67 is another well known
probabilistic planning problem, presented by Majercik &
Littman (1998). The task is to build a sand castle with
high probability by using two actions: erect-castle and dig-
moat. Having a moat improves the probability of success-
fully erecting a castle, but erecting a castle may destroy the
moat. Again, scaling behavior is interesting when τ is high.

In the two right-most plots for run time and plan length in
Figure 7, we see that the run time for CPplan has an expo-
nential growth with τ , whereas our methods scale roughly
linearly. As τ increases, we are eventually able to outper-
form CPplan. In terms of plan quality, our plans included an
average of 1.4 more actions (14% longer).

Discussion
In comparison with CPplan, the major difference with our
heuristic approach is the way that plan suffixes are evalu-
ated. CPplan must exactly compute plan suffixes to prune
solutions, whereas we estimate plan suffixes. It turns out
that our estimates require us to evaluate very few possible
plans (as evidenced by expanded nodes). As plans become
longer, it is more difficult for CPplan to exactly evaluate plan
suffixes because there are so many and they are large.

We have a couple of general observations about how the
number of particles affects performance and plan length. If
τ is well below 1.0, increasing the number of particles may
lead to shorter plans. However, if τ is very close to 1.0, addi-
tional particles might be necessary in order to find a plan be-
cause low probability events may be essential to get enough
probability.

As can be expected, when belief states or distributions
over possible worlds are fairly non-peaked distributions, us-
ing more particles guides search better. However, without
understanding the domain, it is difficult to pick the right
number of particles. Fortunately, the number of particles
is an easily tunable parameter that cleanly adjusts the all-
too-common cost/effectiveness tradeoff in heuristics. We are
currently developing an acceptance sampling method for ad-
justing the number of particles automatically.

Overall, our method is very effective in the CPP problems
we evaluated, with the only drawback being longer plans in
some cases. To compensate, we believe it should be reason-
ably straight-forward to post-process our plans to cut cost by
removing actions. Nevertheless, it is a valuable lesson to see
the size of problems that we can solve by relaxing our grip
on finding optimal plans.

Related Work
Buridan (Kushmerick, Hanks, & Weld 1994) was one of the
first planners to solve CPP. Buridan is a partial order casual
link (POCL) planner that allows multiple supporters for an
open condition, much like our relaxed plans in the McLUG.
Probapop (Onder, Whelan, & Li 2006), which is built on top
of Vhpop (Younes & Simmons 2003), extends Buridan by
using heuristics. Probapop uses the classical planning graph
heuristics implemented by Vhpop by translating every out-
come of probabilistic actions to a deterministic action. In
practice, POCL planners can be hard to work with because
it is often difficult to assess the probability of a partially or-
dered plan. At the time of publication we have not made
extensive comparisons with Probapop, except on the grid
problem where it cannot find a solution.

Partially observable Markov decision process (POMDP)
algorithms, such as (Cassandra, Littman, & Zhang 1997) to
name one, are also able to solve CPP. The work on CPplan
(Hyafil & Bacchus 2003; 2004) makes extensive compar-
isons with the mentioned POMDP algorithm and shows it
is inferior for solving CPP problems with large state spaces
(like logistics and grid). CPplan also compares with Max-
Plan (Majercik & Littman 1998), showing that it too is infe-
rior for several problems. MaxPlan is similar to CPplan, in
that it encodes CPP as a bounded length planning problem
using a variant of satisfiability. The main difference is in the
way they cache optimal plan suffixes used for pruning.

More closely related to our approach is the work on
the CFF planner (Hoffmann & Brafman 2004), where the
focus is on deriving planning graph heuristics for non-



deterministic conformant planning. Like our heuristic, CFF
estimates the distance between belief states, but unlike us,
CFF uses satisfiability to find relaxed plans.

RTDP (Barto, Bradtke, & Singh 1995) is a popular search
algorithm, used in many recent works (e.g., Mausam &
Weld, 2005), that also uses Monte Carlo. RTDP samples a
single plan suffix to evaluate, whereas we estimate the plan
suffix with a relaxed plan. Because we are reasoning about
non-observable problems we sample several suffixes and ag-
gregate them to reflect that we are planning in belief space.

Conclusion & Future Work
We have presented an approach called McLUG to integrate
Monte Carlo simulation into heuristic computation on plan-
ning graphs. The McLUG enables us to quickly compute
effective heuristics for conformant probabilistic planning.
By using the heuristics, our planner is able to far out-scale
the current best approach to conformant probabilistic plan-
ning. At a broader level, our work shows one fruitful way
of exploiting the recent success in deterministic planning to
scale stochastic planners.

A potential application of the McLUG is in planning with
uncertainty about continuous quantities (e.g., the resource
usage of an action). In such cases, actions can have an in-
finite number of outcomes. Explicitly keeping track of pos-
sible worlds is out of the question, but sampling could be
useful in reachability heuristics.

Because our heuristics are inadmissible, we often return
plans that are longer than optimal. We intend to investigate
methods, similar to (Do & Kambhampati 2003), for post-
processing our plans to improve quality. We believe that by
equipping a local search planner, like LPG (Gerevini, Saetti,
& Serina 2003), with McLUG reachability heuristics and
probabilistic plan specific repairs we could be very success-
ful in improving seed plans generated by our planner.

We also intend to understand how we can more fully inte-
grate MC into heuristic computation, as there are numerous
possibilities for relaxation through randomization. One pos-
sibility is to sample the actions to place in the planning graph
to simulate splitting the planning graph (Zemali & Fabiani
2003). More importantly, we would like to use knowledge
gained through search to refine our sampling distributions
for importance sampling. For instance, we may be able to
bias sampling of mutexes by learning the actions that are
critical to the planning task. Overall, randomization has
played an important role in search (Barto, Bradtke, & Singh
1995; Gerevini, Saetti, & Serina 2003), and we have pre-
sented only a glimpse of its benefit in heuristic computation.
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